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ABSTRACT

Equations are developed for synthesizing the radar cross section (RCS) of a
planar resistive sheet. The equations are verified by first calculating the RCS of
the sheet for an assumed resistivity function. The computed RCS is used in the
synthesis equations, and the resistivity distribution is shown to be in agreement
with the original assumed distribution.

Several synthesis parameters are examined and their effect on the accuracy
and computing time are discussed. Results are shown for both monostatic and

bistatic RCS with arbitrary incident wave polarization.
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I. INTRODUCTION

The design of radar-stealthy platforms has become an
important engineering problem over the last several decades.
Although the principles of radar stealth are well known, radar
cross section (RCS) prediction and reduction are still
difficult tasks. The development of increasingly sophisticated
detection systems threatens to reduce the mission
effectiveness of many types of weapons platforms. Much effort
is now spent on reducing radar detectability by reducing the
RCS of the platform.

" Four basic techniques are employed in radar cross section

reduction (RCSR):

1. shaping,
2. surface material selection,
3. active cancellation, and

4. passive cancellation.

Each method has advantages and disadvantages and the final
selection 1is a compromise. Shaping is one of the most
important ways of controlling the radar echo, but usually RCSR
at one viewing angle is accompanied by an enhancement at
others. Radar absorbing materials (RAM) can also be used, and
the RCS reduction for this case is achieved by the dissipation
of energy inside of the material. The platform performance
(e.g., aerodynamic efficiency) generally decreases due to
added weight. Surface maintenance requirements are also more
demanding than those for conventional materials. Active and
passive cancellation are limited methods and can only be
applied to narrow frequency bands and spatial regions.

When choosing materials it is necessary to establish a
relationship between the electrical characteristics of the

material and the target’s scattered field. The electrical




properties of a material are usually expressed in terms of the
complex permittivity and permeability (& and u respectively).
Finding the scattered field when &, u and the shape of the
target are known, is straightforward, although not always
easy. RCS synthesis, the inverse problem (i.e., finding & and
p for a given RCS pattern and body shape) is more difficult
because, in general, a complicated set of coupled integral
equations must be solved. Because of the complexity of the
synthesis procedure, RCS reduction using RAM has been based on
intuition and experience.

An RCS synthesis method for an impedance surface can be
based on the solution of the scattering integral using a
method of moments (MM) technique. The (unknown) surface
impedance is expanded in a series of basis functions with
unknown coefficients. In the most general synthesis case, both
electric and magnetic currents must be considered. When the
surface is planar, an expression for the currents can be
obtained by applying an approximate set of boundary conditions
at the surface [Ref. 1]. In general, a coupled set of integral
equations must be solved [Ref. 2]. The solution yields the
surface impedance at every point on the surface of the body
for a specified scattered field (or RCS) pattern. Once the
surface impedance is known, the electrical properties of the
material can be determined under certain conditions via the
refractive index of the material [Ref. 3].

A resistive sheet is a special case of an impedance
surface since it does not support magnetic currents. It is of
great importance for RCS reduction purposes because it is used
to control travelling wave effects. In this thesis, the
synthesis procedure described above is applied to a resistive
sheet, in which «case the integral equations simplify
considerably.

Chapter II is a review of the concepts and formulas

required in the formulation and solution of the problem. The




reflection and transmission coefficients for a thin resistive
surface are also derived from the boundary conditions. In
Chapter III the appropriate equations are derived and
expressed in matrix form for the monostatic and bistatic
cases. Chapter IV deals with the computer implementation of
these equations and the evaluation of the obtained data.
Finally, Chapter V concludes with a discussion on the

benefits, concerns, and recommendations for future work.







II. THEORETICAL BACKGROUND

In this chapter, a few concepts and equations used

throughout the thesis are introduced.
A. RESISTIVE, CONDUCTIVE AND IMPEDANCE SURFACES

Thin layers of lossy materials are of special interest in
RCSR design as they have lower RCS than the corresponding
perfect electric conductors [Ref. 3]. A mathematical model of
such a layer is an electrically resistive sheet. It can be
visualized as a thin sheet of highly conducting material whose
permeability is that of the surrounding medium (free space).
Theoretically, it is composed of an electric surface current
of infinitesimal thickness whose total strength is
proportional to the tangential electric field at its surface.
The sheet is characterized by a jump discontinuity in the
tangential components of the magnetic field across the
surface, but no discontinuity in the tangential electric
field. Therefore, a resistive sheet does not support magnetic
currents. Its properties are completely specified by its
resistivity, R, in ohms per square. This unit is derived from
the basic definition of the resistance of a rectangular cell
with length 1, and cross section, S. For the special case of

length equal to width (l=w)

(1)

where, ¢ 1s the conductivity of the material in
(Siemens/meter) and t is the thickness of the cell.

The boundary conditions at the two sides of the sheet
follow from the usual boundary conditions of electromagnetics
[Ref. 2]. For the limiting case of t approaching zero, 0
increases in such a manner that R, is finite in the limit.

However, when R_,=0 the sheet is perfectly conducting, and




when R =« it is perfectly transparent. Thus, the boundary

conditions for the resistive sheet are [Ref. 4]

E

tan

R

AHmn=J§=0tEmn=

s

Etan(+) =Et:an(_) =R Jg

where the signs refer to the upper (positive) and lower
(negative) faces of the sheet, and J, is the total surface
electric current supported by the surface.

A general vector form of the boundary conditions are
[Ref. 1]

AXE(+) ~AxE(-) =0 (2)
AxH(+) -AxH(-) = J, (3)

with

Ax{AxE(t)}=-R_J, (4)

s

where 1 is the unit vector normal to the sheet and directed

towards the positive (plus) side of the sheet and J. is the

total electric current supported.

The electromagnetic dual of the resistive sheet is the
magnetically conductive sheet having a conductivity R, in
S/sqg. Such a sheet has a jump discontinuity in the tangential
electric field but none in the magnetic field, and supports
only magnetic currents. It simulates a thin layer whose
permeability differs from that of the surrounding medium (it
would be difficult to realize this type of sheet). When R,=0

the sheet acts 1like a ‘"perfect ferrite" with infinite

permeability and when R,=« it no longer exists. The general

boundary conditions for such a sheet are




with

Ax{AxH ()} =-R T,

where J, is the magnetic current supported and, the convention

followed for the signs is the same as in the resistive sheet
case.

Note that an impedance surface is a simulation of a thin
layer whose permittivity and permeability both differ from the
surrounding medium. Therefore, a combined sheet consisting of
resistive and conductive ones is equivalent to an impedance
surface. Although the two sheets are, in general, coupled,
with each affecting the scattering from the other, decoupling
occurs when the sheets 1lie in a plane. It is therefore
sufficient to solve the problem for the simpler case of the
resistive sheet and use the duality principle to get the
solution for the other. The solution of the combination sheet
can follow by adding the two solutions [Ref. 1].

B. REFLECTION AND TRANSMISSION

The reflection and transmission coefficients for a
resistive film can be derived from the boundary conditions in
Equations (2), (3) and (4) and the geometry shown in Figure 1.
The subscripts i, s and t refer to incident, scattered (or
reflected) and transmitted, respectively. The two principal
polarizations (parallel and perpendicular) are investigated

separately. Specular reflection, and transmission at the angle

of incidence is assumed, because the sheet is infinitely thin.




- —
Bi: Bt
Figure 1: Reflection and transmission from
a registive sheet.

1. Parallel Polarization
For parallel polarization, the electric field of the

incident wave lies in the plane of incidence

Ei=0E e TP, (5)

Without loss of generality, it can be assumed that the plane

of incidence is the x-z plane. Figure 2 shows a cut through

the ¢$=0 plane.

/} VA
0, _
- E.
s o] o
g?\ 6= 6, (>'/
= -
X
B,= B

Figure 2: A cut of Figure 1 in the plane of
incidence.




The incident fields are

7 -E, [-Rcos (6,) +2sin (6,)] e 7P [-x5in(8;) ~zcos (8;)] (6)

and
=i By -7p[-xsin(8;) -zcos(0,)]
Hi=p_2e i i (7)
o
where =3%2 is the wave number. Denoting 7T, as the

transmission coefficient for parallel polarization, the

transmitted fields are

Bt=T,E, [-Rcos (8;) +2sin (0,)] e TP I-xein() mscos(0] (8)
and
St E, -jp-xsin(6,)-zcos(6,)]
H :yTp_TT_e 2 b . (9)
[}
Finally the scattered fields are
F°=T,E,[-Rcos (8;) -2sin(B,) ] e IPIein (O zcos 0] (10)
and
7375 _ Eo -7Pp [-x8in(0;) +zcos (8;) ] '
H -—yrpﬁ_e 1 i (11)
(24

where T, 1is the reflection coefficient for parallel

polarization. Using the notation introduced in Section A and

applying the boundary conditions on the electric field

intensity at z=0




E("'):(E—'i*'ﬁs)lz:ol ( )
12

Similarly for the boundary conditions on the magnetic field

intensity
H(+) = (H*+H9)|,.,,
(13)
H(-)=H%|,,.
Inserting Equations (6), (8), (10), and (12) into (2) gives
T,=1+T,. (14)

Using Eqguations (7), (9), (11) and (13) into (3) gives

- E a s
JS=_2TI_O (l_I‘p_Tp) e Jﬂ[ xs:.n(ei)] . (15)
o
Using Equation (4) and Equation (15)
(16)

RS
T,cos(0;) == (1-T,-T,) .

(o]

Solving Equations (14) and (16) for the reflection coefficient

yields
_1,c05 (0,) (17)

p- 2R +*n,cos (0;)

and for the transmission coefficient
T - 2R, (18)
P 2R_+n,cos(8;)

10




2. Perpendicular (Normal) Polarization
For perpendicular polarization a similar procedure is
followed for deriving the reflection and transmission

coefficients. In general the incident field is of the form

E’i=$Eoe‘jBi‘fi' (19)

Again, without loss of generality, the x-z plane is considered

as the plane of incidence. Expressions for the incident waves
are

!

E’i=—yEoe_jp[_XSin(ei)-ZCOS(ei)] (20)

.. E P _
Hl:f[-zcos(ei) 2sin (0,)] e P lxein(d-zcos Il (371

[¢]

Denoting T, and I', the transmission and reflection coefficients
respectively for normal polarization, the scattered and

transmitted fields are

E‘tz_}?TnEOe—jﬁ[—xsin(ai)—zcos(ei)] , (22)

- E . 58 [-x8in (0;) - )
At=T 2 [-Rcos (0;) +£sin (0,)] e TP e scos @I (23

(o]

ES=—yFnEoe—jﬁ[—XSin(ei)+ZCOS(ei)] , (24)

and

11




ﬁ5=r,,_nE_° [2cos (0,) +25in (0,)] e 7B (xein( zcos0) (o)

(o)

Applying Equations (20), (22), (24) and (12) to (2) gives
T,=1+I_ . (26)

To obtain the surface current, Equations (21), (23), (25) and

(13) are inserted into (2) yielding

J, =j>n£°cos(6i) (T,+T,-1) g IP [-xein(8)] (27)

s
o

Using Equation (27) in the boundary condition (Equation (3))
gives
RS
T,=—=cos(6;) (1-T7,-T,) . (28)
(2]
Solving Equations (26) and (28) for the reflection and
transmission coefficients gives

-1,

) 2R cos (0;) +n, (29)

n

and

2R_cos (6,)

e RE (30)

C. RADIATION AND SCATTERING EQUATIONS

In general, electric and magnetic currents are the
sources of radiated or scattered fields. For the case of a
resistive sheet the magnetic currents are zero. The formulas
simplify further when only the far zone fields are of

interest.

12




The formulas for the far - field calculation are derived
by Balanis [Ref. 5] and are given in this section for the
reader’s convenience. They are specified for the case of
currents in the x-y plane of a Cartesian coordinate system as
shown in Figure 3.

The spherical components of the electric field intensity

are
E =0,
1 e‘jﬂr
Bo=- Jelnr Mol / (31)
o iBr
g -_JBe? , 32
¢ AT Moy (32)
where
A%=j]'[J;cos(ﬁ)cos(¢)+J}cos(e)sin(¢)]ejbr@wwdx,dyl (33)
F=3
N"’:ffs[_JxSin(d’) +J,c0s (§) ] eTBr'cos¥ gx/dy”, (34)
and

r’cosy=x'sin(0) cos (¢) +y’/sin(0) sin(¢$) =x'u+y’v=g. (35)

For the observation point appearing in Equation (35) the
direction cosines are defined by

u=sin(0) cos(¢) ,
v=sin(0) sin(¢) , (36)

w=cos (0) .
In Chapter III the currents derived in Section B will be

13




used in the radiation integrals (Equations (31) and (32)) to
obtain the scattered fields. The currents are functions of the
surface resistivity through the reflection (or transmission)
coefficients. Thus, for the synthesis problem E, and E, in
Equations (31) and (32) are known but, the currents J, and J,

(functions of R,) are unknown.

e
y, /j%f/ >

L. >
Figure 3: Coordinate system for scattering
from a planar rectangular plate.

&

All the formulas assume that the current is not affected by
the presence of the edge. This turns out to be a wvalid
assumption for resistive surfaces of finite size because the
edges are "softer" than perfectly conducting edges.

14




III. FORMULATION AND SOLUTION

The scattering from a planar rectangular resistive sheet
with surface resistivity R, is investigated for the monostatic
and bistatic cases. Using Equation (4), an estimate for the
current distribution is obtained, and the total scattered
field is calculated. To verify the synthesis equations, the
calculated field is used to initiate the synthesis procedure
for the surface resistance.

The geometry under consideration is still that shown in
Figure 1. The sheet lies in the x-y plane and is illuminated
by a plane wave whose electric field contains both parallel

and perpendicular components

.E'iz (6E9i+$E¢i) e_jﬁi'f (37)

where
-7B,F=7B[x sin(0;) cos (¢;) +y sin(6;) sin(¢;) +z cos (6,)]

=3B [x u;+y vy+z wyl .

On the surface of the sheet (z=0 and T=I')
-jB;E=-7B,F/=7B (x'u;+y’v;) =3Bh. (38)

The formulation as well as the analysis of the problem is
different for the bistatic and monostatic cases and,

therefore, each is considered separately.
A. BISTATIC CASE

Equation (4) with A=2 becomes

2x (ExE(-)) =-R.J, (39)




E(-) =E®= (0T, B +§T,Ey) b, (40)
The cross products are

2x0=-2cos (0) sin(¢) +Pcos (0) cos ()
2xd=-Rcos ($) -Psin(¢)

and the triple products

2x (2x8) = -(Rcos (0) cos (¢p) +Pcos (8) sin(¢))
and
5x (£x$) =2sin () -Pcos () .
Then
2x (2xE(-)) ={-R[cos (8;) cos (¢;) T, B -sin (¢;) T,E}]

-9 [cos (8;) sin (¢;) T, B +cos (¢;) T, E;)teiBh,

Substituting in the explicit expressions for the transmission
coefficients (Equations (18) and (30)), into (40), Equation

(39) gives the components of the current on the surface of the

sheet
o] c08(8,) cos(¢)) Eg sin(¢,) cos(6;) Ey RTY (41)
x 2Rs+nocos(ei) 2R5COS(9i)+ﬂO) !
5 -o| c0s(6,) sin(¢;) By  cos () cos(6;) By cibn  (42)
y 2R_+n,cos (6;) 2R_cos (0;) +1,

Now that the currents are known, the scattered fields can be
calculated. Because of the complexity of the formulas,
parallel and ©perpendicular polarizations are treated
separately. Besides, any arbitrary polarization can be

decomposed into a sum of these two orthogonal components.

16




1. Parallel Polarization
When the field is parallel polarized E; =0 and Equations
(41) and (42) simplify to

1

= i,7ph , .
J,=2EgeiPicos(0;) cos(¢,) ZR.+n,c05 (8, ' (43)
=2 Eleibn ) sin (b, 1 _
J,=2Eg e7PPcos (8;) sin(¢;) 3R.77.C05 (8, (44)
Using equations (43) and (44) in (33) gives
A@=2Eﬁcos(6)cos(Oi)cos(¢—¢i)Ii (45)

where a new quantity has been defined for convenience

Fk (h+g)
Ii:fj;ZIQf;ocos(ﬁi)dxjdy/' (46)

The resistivity is a function of position in general and,
therefore, it cannot be taken out of the integral. In order to
reduce the scattering equations to closed form expressions, it
is assumed that the resistivity profile can be accurately
represented by a step approximation. The resistivity function
is represented by a series of basis functions (pulses) with

unknown coefficients

M N
R (x!,y) =YY rpfmn(x), ¥ (47)

m=1 n=1

where M and N are the number of patches in the y and x
directions respectively. The unknown expansion coefficients
are {r,,} and the expansion functions are two-dimensional steps

or "pedestals"

17




1, x',y'es ,
fon (X!, y7) = 75 P (48)
0, else.

The geometry is defined in Figure 4. The center of the mn®

patch is at (x,,, ¥,,) and each patch has dimensions Ax by Ay.
— e AX

y m ‘// -*AY

N

Yo

e L

Figure 4: Division of the sheet into
rectangular subdomains.

Applying the series representation (47) to (46) gives

= elP (-9 ! 3/
= f];21g+nocos(ei)dx d

B (heg)
=ffs M N e ’ dX/dy/
2"y r,,f,*n,cos(6))

M N s
B (h+g)
Sm 2 I ppt1,c0s (0,)
For the mn” term of the sum the integral is

B (h+g)
/I e sy dx/dy’-
Sm 2 Lpptn,cos (6;)

1 Fk(h+q) g/ i)
Zrhn+nocos(0i)f];me dax’dy”.

(49)

18




Evaluating the integral in (49) yields a closed form

expression in terms of sinc functions. Thus I, becomes

M N
I,=AxAyS, S,y ¥ a,, e P (50)
m=1 n=1
where
_sin(B (u+u;) Ax/2] . B (u+u,;) Ax
oS (wu) Axyz - oimel—— 1 (51)
_sin[p (v+vy) Ay/2] _ . B (v+vy) Ay
S,= B(viv) Ay 2 —31nc[————??————], (52)
_ 1
8nn 2r,+n,cos(6;) ' (53)
and
Pmn=xmn(U+ui) +ymn(V”LVi) ' (54)

Using Equation (50) allows Equation (45) to be written as

N .
Np=2Eg cos (8;) cos (6) cos (¢-¢;) AxAyS, S,y Y a, el Prm,

Finally, the complete expression of the §-component of
the scattered electric field for a parallel polarized incident
field is

E=C, Eg cos (8;) cos(6) cos (¢-¢,) I, (55)

where

19




c,= _jﬁ;‘;fﬂr. (56)
The first subscript on E,’ denotes the polarization of the
scattered field, whereas the second subscript denotes the
polarization of the incident wave.
By the definition of the radar cross section for a three-

dimensional target

.
o=lim[4nr2l£fL] (57)
AR

one obtains for this case

2
oee:% [cos (6,) cos (8) cos (¢-¢,) I,] (58)

To calculate the ¢-component of the scattered electric
field, E,, Equation (32) is used along with Equations (34),
(43) and (44). Following the same procedure

E§=-(;E§cos(6i)sin(¢—¢i)I1 (59)

and the corresponding radar cross section is

2
o¢e:—glgil-[cos(ei)sin(¢—¢i)IJZ. (60)

2. Perpendicular Polarization
When the incident field is normally polarized (E/ =0),
the current components in Equations (41), (42) reduce to

1

=-2Eleibhgj 1 .
J,=-2Eg elPisin(¢;) cos(0;) 3R.c0s (6,) 7.

' (61)

20




1 (62)

= io7Bh , , .
J, =2 EyelPlcos (¢;) cos (0;) 3R.Cos (0,) 1,
Using Equations (61) and (62) in (33) gives
1\79=2E;;'cos(6)cos(6i)sin(¢—¢i)I2 (63)

where

eik(hrg) o
I,= .
2 ffs 2R_cos (0;) +110dx dy

Following the procedure used for parallel polarization one

obtains
M N _
1,=AxAyS,5, Y ¥ b, e (64)
m=1 n=1
with
1 (65)

ma” 2, cos (0,) 41N,

Finally, using Equation (63) in (31) gives the #-polarized
component of the scattered field

Egy=C,Ey cos (8) cos (8,) sin(d-¢;) I,. (66)

The corresponding radar cross section is then
- (noﬁ)z 6 ; - 2 (67)
(79 ———Er—-[cos( ) cos (0;) sin(é-¢;) I,1°.

To determine the ¢-component of the scattered field, Equation

(34) is used, yielding
A&=2Efcos(61)cos(¢—¢ﬂ.5
and then
Egy=C,Egcos(0;) cos (¢-0;) I, . | (68)

The corresponding radar cross section is

21




[cos(0,) cos (¢-0;) I,]1%. (69)

3. Arbitrary Polarization

In general, the incident wave is composed of both
parallel and perpendicular components. Thus it is necessary to
combine the results of Subsections 1 and 2. The total 6 and ¢

components of the scattered field intensity are given by

Eg = Egp + Egy
| | (70)
=C,cos (0) cos (0;) [Egcos (d-0;) I,+Eysin(¢-¢;) I,]

and
5 _ S s
Ey = Eye * By

(71)
=-C,cos (0;) [Eg'sin (¢-0,) I,-Ejcos (d-¢,) I, .

At this point it is possible to cast Equations (70) and
(71) in matrix form

EO _ AGB A6¢ Sl (72)

where, using Equations (50) and (64)
Age=Eg C,AxAycos (6,) cos (6) cos (¢-9;) S, S, (73)
Agy=Ey C,AxAycos (8,) cos () sin ($-9;) 5,5, (74)
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Aye=~Fg C,AxAycos (0;) sin (¢-0;) 5,5, (75)

and

A¢¢=E¢i C,AxAycos (8;) cos (¢-¢,) 5,5, . (76)

The terms S, and S, in the right hand side of Equation (72)
represent the double summation terms in (50) and (64) for each

scattered field point, namely

M N
5=Y Y ame? ™ )
m=1 n=1
and
M N .
$,=% ¥ b,,e?PFm. (78)
m=1 n=1

The resistivity is embedded in the terms S; and S,.

B. MONOSTATIC CASE

For the monostatic case (¢=¢; and 6=0;,) and Equations (70)

and (71) reduce to

Ef=C,Eycos?(0) I, (79)
and

Ef=C,Eycos (0) I, (80)
respectively. Equation (53) can be written now as

app = 1
mn 2r, +n,cos (0)

(81)

and Equation (65) as
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) 1
b 2r,,cos(0) +n, (82)

Equations (79) and (80) cannot form a linear system of
equations of the form of Equation (72) ©because the
coefficients in vectors a and b (Equations (81) and (82))
change with angle.

The crudest approximation that can be made to eliminate
the 6 dependence is to consider cos(0) 1. Equations (79) and

(80) reduce to

Ef=C,E I, (83)
and

Ey=C,Ey I, (84)
and Equations (81) and (82) to

a, =b, =—* (85)

mn 'mn ~
2 IuntNo

The monostatic RCS is for both polarizations

2
o= B (86)
™

Now it 1is possible to set up a linear system of
equations. In fact, as a f-polarized incident electric field
creates only #6-polarized scattered electric field, and
similarly for a ¢-polarized incident field, an equation of the
form of (72) contains only one component of the scattered
field. These equations were implemented in MATLAB and the code

listings are given in the Appendix.
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C. SYNTHESIS FORM OF THE SCATTERING EQUATIONS

For RCS synthesis, the scattered field components derived
in the two previous sections are known quantities and the
expansion coefficients {a,} and {b,,}, must be determined.
Expressing the scattered field equations in appropriate matrix
form, it is possible to solve for the expansion coefficients
using standard matrix techniques. To achieve this it is
convenient to use a single index to count the patches rather

than the double summation. Let
M N . ,
> Cpe” P e = Y c e (87)

where qwlcan be either a,, or b,,.

There are MxN unknowns and therefore MxN equations are
needed to solve for {a,} or {b,,}. Because of the periodicity
of the sinc functions (Equations (51) and (52)) in the
direction cosines u and v, it is advantageous to work in
direcfion cosine space. As shown in Figure 5, the region
defined by -1<u,v <1 is divided into the same number of
subsections as there are patches on the sheet. The centers of
these subsections (uy,,v,) form a grid of points at which the
scattered field components are specified, yielding MxN values
for each field component. The area in the unit circle is the
visible region while exterior points have no physical

significance.
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-1

Figure 5: Division of direction cosine
space into subsections.

The values of Ef and E;S are used to form a column vector
of length MxN. Furthermore, at each of the patches, cos(6,),
sin(¢.-¢;), cos(¢.-¢;) can be expressed in terms of (uy,v)

according to the following relationships

uZ+vi=sin?(0,) ,

v
Ii==tan(¢k).

Inverting these formulas gives

cos (8,) =y/1- (uf+vE) ,

v
¢, =arctan(—%) .
Uy

(88)

In the direction cosine space the terms cos(8#), sin(¢-¢,),
cos (¢-¢;) as well as the product S,S, can be written in the form
a column vector of length MxN. Denoting column vectors with an

underline
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[£,], = cos (0y) ,
[—XZ]k=COS (¢k—¢1) Y
(89)
[%,], =sin (60
[_X4]k=5u ( uk) SV(Vk)
We can further define the column vectors X, and X, as
MxN .
&), = Y ae PR (50)
v=l
and
MxN BB, ( )
- BB, (u, v
[X)], = ) be A (91)
v=1
The vectors X, and X, can also be written as
X =Ba (92)
and
X, =Bb (93)

where a and b are column vectors of length MxN and follow
from equations (53) and (65) respectively. The matrix B has
dimensions (MxN) by (MxN) and is defined as

[Bly, = e PU% (4 v (Viervi)] (94)

where k,v=1,...,MxN,
With the above matrices defined, Equation (70) can be

written as
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=C,cos(6;) X *X(Eei}_{ *X_ +Ej X *X)) (95)

where * denotes an elementwise product and C =C,AxAy.

Equation (71) becomes

=—Clcos(61-)54*(Eei;(3*;(a—E¢i_)_(2*_)_{b). (96)

For the monostatic case X =X =X and Equation (83) becomes

=b
Ef=C EfX *X (97)
and Equation (84)
ES-CEjX, *X. (98)

For this case u=u and v,=v, and the matrix B is defined now as

[Bkazezjﬂ[Xvuk"Yka] (99)

In all of these equations the goal is to solve for the vectors
X,, X, or X, which can easily be done using elementwise

division. Once these vectors are known, it is possible to

solve for a or b of Equations (92) and (93).
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IV. COMPUTER IMPLEMENTATION AND DATA ANALYSIS
A. GENERAL APPROACH

In this chapter the surface resistivity synthesis
procedure is simulated and computational accuracy issues are
discussed. The simulation consists of computing the RCS (or
scattered fields) of a rectangular sheet with known
resistivity. Then the computed RCS is used in the synthesis
equations to obtain the resistivity function. In principal,
the synthesized distribution should be exactly the same as the
original distribution used to compute the RCS. However, in
practice, the agreement between the two depends on several
factors, such as the sampling method used to £ill the vectors
E; and E,; in Equations (95) through (98).

From the field equations in matrix form, the scattered
field components can be computed in any direction (6, ¢) when
the resistivity function R, is defined. To form the vectors Ef
and E;°, MxN directions must be chosen to compute specific
values. Once the vectors E;/ and Ejare defined, it is possible
to solve these equations for the vectors X,, X,, and X. The
final step in the synthesis procedure is the reconstruction of
the expansion coefficients {r,,} from these vectors.

One approach to choosing the observation directions is to
define MxN points in direction cosine space as described in
Chapter III-C and Figure 5. The square region defined by
-1<u,v<1l is divided into patches and their centers represent
the chosen directions. Equally spaced points in u and v have
been used in most calculations, but the spacings in these two
principal axes can be different in general. The advantage of
this approach is that equal sample spacings work well with
scattering patterns that are periodic in u and v.

At this point, two variations have been investigated.
They are referred to as method (I) and method (II). In method
(I) the observation points are restricted to be inside of the
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unit circle (visible region), which makes physical sense. A
disadvantage of this method is the necessity of forcing the
number of patches on the sheet to be equal to the number of
sample points in the visible part of direction cosine space.
This condition becomes very restrictive as the spacing in u
and v gets close. Consequently, if MxN points are to be
contained in the unit circle, the -lsu,vs1l region has to be
divided into more than MxN patches, say N, by N,. However,
despite this restriction, the method was successful, even for
large sizes of the sheet.

A modified version of this approach is method (II) in
which the MxN direction cosine samples are spread over the
complete range -1<u,v<l. For this case N;=N and N,=M. Note
that the points outside the unit circle are not in the visible
region and therefore one might expect that these values would
not affect the synthesis result. However, an attempt to set
the exterior points equal to zero results in a badly scaled
matrix for the fields, and the matrix is almost always
impossible to invert. The reason is that setting the exterior
field values to zero is an attempt to synthesize a resistivity
distribution for a discontinuous pattern. Realizable
resistivity functions do not yield scattering patterns that
abruptly go to zero. To avoid this problem the calculation can
be extended to the exterior points using complex angles. In

this case the expression

cos (0,) =y1-(u2+v,?) (100)

can take on complex values. At the corners |ud=|vd=1 and,

|cos (8,)j=1

(101)
arg(cos(Ok))=i-%.

While the first method makes more physical sense, the

30




second is more flexible in choosing the number of far-field
points (or patches), and is shown to work well over a large
range of values of M and N.

To verify the synthesis procedure, the scattered field is
calculated using two different resistivity profiles: (i) a
constant resistivity (R=377Q) and (ii) a two-dimensional

linear taper given by the equation

R (x,y) =150(x|+|¥]) Q. (102)

For the field calculation, a large enough number of patches is
used to sufficiently approximate the linear shape of Equation
(102) . The synthesis was tested using a few specific field
points in the range of 9 to 256. This corresponds to M and N
in the range of 3 to 16. Beyond that, the method still works
well, but computational time increases significantly. Roundoff
errors and numerical instability also affect the solution.
Matrix B in Equations (92) or (93) has to be inverted and is,
in general, an ill-conditioned matrix. It becomes singular as
the number of patches increases. In such cases the use of the
Moore-Penrose pseudoinverse matrix [Ref. 7] rather than the
inverse, was found to give satisfactory results for larger

numbers of patches.

B. BISTATIC CASE

Methods (I) and (II) are applied for the bistatic case,
first for a pure TM, incident wave, and then for arbitrary
incident wave polarization, which 1is the most general
situation. For each resistivity function, the scattered fields
are computed for sheets of sizes 1Ax1A and 5Ax5A. Data are
presented for wvarious numbers of patches and the two
resistivity profiles. The plot of the expansion coefficients
{rm} (i.e., the resistivity profile used to calculate the

scattered fields) 1is compared with the reconstructed
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resistivity function. For small number of patches, the
reconstruction is exact (one can not distinguish them when the
plots are overlaid). But as the number of patches increases
some numerical and sampling errors can be observed. In general
both methods (I) and (II) work well in the entire range of

synthesis parameters investigated.

1. Parallel Polarization
Assume the incident wave is TM, polarized (E;=0)and that

it arrives incident from the direction 6,=30° and ¢,=0°. As

an example, the RCS pattern for a one wavelength square sheet
is shown in Figure 6. The field has been computed using method
(II) and N,=N,=64. Various synthesis results are presented in
Figures 7 through 17. Note that

1. M and N are the number of subdivisions on the
resistive sheet in the directions y and x (see Figure 4).

2. N, and N, are the number of subdivisions of the region
-1lsu,vsl (see Figure 5).

3. Lx and Ly are the dimensions of the sheet in x and y
directions expressed in wavelengths.

It should be noted that in method (I) N,xN,2MxN, while in
method (II) N,=N and N,=M. In most cases the two methods gave
identical results, thus the data will only be presented once.

In Figures 7 and 8, only 16 field points are used with
constant and linear taper resistivities. The initial and
synthesized distributions are identical. Figure 9 and 10 show
that the synthesized linear taper resistivity has a maximum
error of 1% when 256 points are used. The relative error for
the constant resistivity case with the same number of points
becomes 2% as shown in Figure 11.

The RCS for the 5Ax5A sheet is shown in Figure 12. Again
the two resistivity functions are considered. In Figures 13
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(constant resistivity) and 14 (linear taper), only 16 field
points are needed to recover the exact resistivity function.
In Figures 15 through 17 it is seen that the error in the
synthesized resistivity is also negligible when 256 points are
used. It was found that for a sheet with dimensions kAxkA, the

choice of N=N,=k gives converged results.
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Figure 6: Bistatic RCS of a resistive sheet with
Lx=Ly=lambda, N,=N,=64, §=30 deg, ¢=0 deg, R, is given by
Equation (102).
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Figure 7: Original and synthesized resistivity with method
(I) are identical for this case. Lx=Ly=lambda, M=N=4, N =4,

N,=5.
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Figure 8: Reconstructed and original resistivity functions
are identical. For this case Lx=Ly=lambda, M=N=4, N,=N,=4.
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Figure 13:
identical. For this case,

N,=5.

y (wavelengths) ] x (wavelengths)

Synthesized and original resistivity are
Lx=Ly=5*lambda, M=N=4, N,=4,
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Figure 14: Synthesized and original resistivity are
identical. For this case, Lx=Ly=5*lambda, M=N=4, N,=N,=4.
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Figure 15: Synthesized and original resistivity. For this
case, Lx=Ly=5*lambda, M=N=16, N;=N,=16.
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Figure 16: Difference of the reconstructed and the
original resistivity distribution. The relative error is
negligible.
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2. Arbitrary Polarization

For the general case where the incident field has both
parallel and perpendicular components, both the ES and the E;°
vectors given by Equations (95) and (96) depend on X, and X,.
The vectors X, and X, are not independent and both implicitly
contain the expansion coefficients {r,,}. An expression of
these equations in such a form that permits the solution for
{r,,} once the field vectors are known is desired. One approach
is to specify the magnitude of the total scattered field as

given by
s _ s s
E2=yIEs] | Ey]
but this leads to very complicated functions of a and b.

Alternately, Equations (95) and (96) can be expressed as

S =
Lg =8gp*S *Agy*S,

(103)
E§=A¢G*SI+A¢¢*$2-
Solving this system for X, and X, yields
S _ S
%,).- [Boy*Eg gy *Es ], (104)
T [Rep 40 Bgp*Reo)
and
S_
[£5],= o M Y : (105)
Pl [Bop*ag04 g *Age]

Once X, or X, is known, Equation (92) or (93) can be used to
solve for the vectors a or b. The expansion coefficients can
easily be determined using Equation (53) or (65).

This procedure was applied to the resistivity functions
of the previous section for sheets of dimensions 1Ax1A and

5Ax5A. Method (II) was used for convenience and the results
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are, for all practical purposes identical with the original
resistivity. Figures 18 and 19 compare the original and
synthesized resistivity profiles (linear taper) for the 1Ax1A
sheet and Figures 20 and 21 for the B5Ax5A and constant
resistivity. In both cases 144 points have been used. For all
the cases it was assumed that E/ = E, =1.
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Figure 20: Original and synthesized resistivities for

arbitrary polarization.

For this case Lx=Ly=5*lambda,

M=N=12, N,=N,=12, E; = E, =1.
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C. MONOSTATIC CASE

The synthesis procedure can be applied to the monostatic
case using Equation (97) or (98) for the scattered field.
Alternatively, Equation (86) of the RCS can be used, which is
the same for both polarizations.

Methods (I) and (II) have been investigated for two
resistive sheets of sizes 1Ax1N and 3Ax3A, and the two
resistivity profiles considered previously; namely a constant
of 377Q, and a linear taper given by Equation (102). The two
methods give identical results.

Figure 22 compares the corresponding data for the 1Ax1A
sheet with constant resistivity. In Figure 23 the difference
between the synthesized and original distributions is plotted

for a linear taper profile on a 4Ax4A sheet.
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Figure 22: Original and synthesized resistivities for the
monostatic case. On this case, Lx=Ly=lambda, M=N=12,
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Figure 23: Difference in the synthesized and original
linear taper resistivity for the monostatic case. For this
case, Lx=Ly=3*lambda, M=N=12, N,=N,=12.
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D. RELATION TO THE SAMPLING THEOREM

In the previous two sections it was demonstrated that the
synthesis procedure works well for both methods (I) and (IT)
over a wide range of synthesis parameters. These calculations
have verified the synthesis equations and the computational
approach to solving them. So far the question of how many
field points are needed to uniquely determine an unknown
surface resistivity function has not been addressed.

The most critical part of the synthesis procedure is the
inversion of the (MxN) by (MxN) matrix B. It is desirable to
use the smallest number (MxN) for computational and accuracy
reasons. To find the minimum (MxN), a technique is borrowed
from signal analysis. The scattered field is computed using a
sufficiently large number of patches. The FFT is then
performed on this array of field values. The result can be
translated into the minimum number of patches required to
accurately represent the field. This is based on the fact that
plotting a field pattern (function) is basically sampling its
distribution adequately. The interval between the sampled
field points at which the field is computed is the sampling
interval and the reciprocal of this is the sampling frequency.
Dividing the u and v region into N, and N, segments
respectively, the corresponding sampling intervals are 2/N,
and 2/N,.

Nyquist’s theorem [Ref. 6] requires that at least twice
the maximum 'frequency component’ should be used as the
smallest sampling rate. Utilizing the fact that the FFT is
symmetric with respect to the half of the sampling frequency
used, i.e., symmetric to the N,/4 and N,/4 point, a plot of the
two-dimensional FFT vs the number of segments N, and N, can be
obtained. For simplicity an equal number of points have been
used (N,=N,) and the FFT is performed on the rows and the
columns of the matrix of the field values to identify the




spatial frequencies in u and v. Figure 24 shows the FFT
performed on the columns for the field depicted in Figure 12
using methods (I) and (II). As expected, the frequency content
is the same in both cases.

In Figure 25 the spatial frequency content of the field
in Figure 6 is shown. One can conclude that N, and N, greater
than 4 is sufficient. In Figure 26 the field in the ¢=0 plane
is shown. The dotted line represents the field using only 16
points (M=N=4) and the solid line the field when M=N=64.

However for the 5Ax5A sheet with the field shown in
Figure 12 and the frequency content shown in Figure 27, 6
segments per direction should be sufficient. In Figures 28 and
29, the corresponding field plots in the ¢=0 plane show the
convergence.

Figure 30 shows the monostatic RCS of a Ax\ resistive
sheet. The spatial frequency content of the field is shown in
Figure 31, and it reveals that 4 segments are sufficient. The
corresponding field plots in Figure 32 and 33 illustrate the
convergence. The same process is applied to the 3Ax3A\ plate.
The freqguency content is shown in Figure 34 and the

corresponding convergence is shown in Figures 35 and 36.
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Monostatic RCS from a one wavelength square
by Equation (102).
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Figure 33: Using M=N=4, the monostatic RCS due to the
reconstructed resistivity profile is converged.
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E. SUMMARY

In this chapter the synthesis procedure was computer
simulated and the corresponding data were presented. Two
methods were investigated for choosing observation points for
generating synthesized distributions. In method (I) points
inside of the visible region were used. This gives good
results, but it was shown to be very restrictive because the
number of observation points in the visible region must match
the number of subdomains on the plate. By allowing complex
angles it is possible to use observation points in the entire
region bounded by -1su,vsl (method (II)). This is much more
flexible and still gives good results.

Using Fourier analysis and the sampling theorem it was
possible to identify the minimum number of patches that can be
used in the synthesis procedure. In general the larger the
sheet the more points are necessary, and consequently the
computing time increases significantly.

To illustrate the procedure two resistive sheets were
considered, 1Ax1A and 5Ax5A for the bistatic case and 1Ax1A
and 3Ax3\ for the monostatic case. The method was tested first
from the computational point of view. For the resistivity
distributions considered (constant and linear taper) it was
found that patch dimensions of approximately 0.5\ and 0.25\
were sufficient in the bistatic and monostatic cases,
respectively, to obtain good agreement with the original

scattered field.
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V. CONCLUSIONS

A method of RCS synthesis for planar resistive sheets has
been presented. The synthesis equations were developed
assuming that the resistive sheet boundary conditions hold at
all points on the surface. Therefore the equations implicitly
neglect the effect of the edges on the current.

The equations were verified by first calculating the RCS
of the resistive sheet for a known resistivity function and
then using these values for back solution to obtain a
synthesized surface resistivity. In principle the two
resistivity functions should be identical, but because of
numerical roundoff the agreement is not exact. However, the
results for a wide range of synthesis parameters were in very
close agreement with the original resistivity distributions.

It was also shown that a Fourier decomposition of the
scattering pattern yields guidelines for choosing the
subdomain size, or equivalently, the number of far field
observation points. It was found that a subdomain size of
about 0.5N for bistatic RCS and 0.25N for monostatic RCS give
converged results. By convergence is meant that RCS for the
synthesized distribution is essentially the same as the RCS
for the original scattered distribution.

It is important to note that the synthesis is based on a
particular assumption with regard to the form of the current.
The resistive sheet boundary condition is equivalent to the
physical optics approximation in the sense that the current in
the vicinity of the edge is not disturbed by the presence of
the edge. The current is only a function Of‘the incident field
and the surface resistivity (see Equation (4)). Thus using the
synthesized resistivity distribution in a method of moments
code could yield a RCS substantially different from that based
on the assumed current if surface waves exist. Examples are

shown in Figures 37 and 38. In these cases the surface waves
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are not as strong as they would be for a surface with more
highly conducting edges, and therefore the agreement between
the two curves is relatively close. This problem is overcome
if the current is treated as an unknown along with the
resistivity. This approach allows a rigorous solution of the
problem and is recommended that future work is directed along

these lines.

72




“Sigmaftambda*?2 in dB

i L

__40 l ] ] l L
-100 -80 -60 -40 -20 0 20 40 60 80 100
Angle theta in deg (phi=0)

Figure 37: Comparison of the monostatic RCS using MM and
the approximate method. For this case, Lx=Ly=lambda,

M=N=12, N,=N,=12. R, = 377Q.
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Figure 38: Comparison of the monostatic RCS using MM and
the approximate method. Lx=Ly=lambda, M=N=12, N;=N,=12. R,
is given by Equation (102).
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APPENDIX. COMPUTER CODES

This appendix contains the codes developed to computer
simulate the synthesis equations. Code field.m calculates the
scattered field or RCS for each case (monostatic, bistatic,
method (I), method (II)), given the size of the resistive
sheet and the surface resistivity. Code synth.m uses the field
values calculated from field.m, to synthesize the surface
resistivity. Code synthld.m uses the surface resistivity
values calculated by synth.m to plot the RCS in the ¢=0 plane.
Code fanalysl.m performs the FFT analysis for methods (I) and
(IT), and code fanalys2.m performs the FFT analysis in the u
‘and v direction of the scattered field. Function coord.m is
used in the first two codes to find the coordinated of the
patches given the size of the sheet and the number of patches.
Finally, program fit.m finds the closest number of points
closest to an input value that fit in the unit circle, and is

used in method (I).
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o\

Program field.m

o\@

o\°

(1) Bistatic case: (sigma_theta_theta, or
sigma phi_ phi)/lambda”2

% or the

o\P°

of the

% incident field, given the values
Eth i and

% Ephi i and assuming Co=1.

% (ii) Monostatic case: sigma/lambda”2

% The plate can be PEC or resistive. Plots of the

resistance,

o\®

as well as, 3-D plots of the field are shown.

o\°

Works in the direction cosine space.

o\P°

Date: 10 Nov 1994
By: Nick Faros.

o\°

clear

o\°
o\P°
o\@
o\®
o\
o\

INPUT PARAMETERS $%%%%%

choicel=input ('Enter 1 for bistatic or 0 for monostatic:
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choice2=input ('Enter 1 for method (II) or 0 for method (I):
")

al=input ('Enter size in -x (multiples of wavelength): ’);
bl=input (' Enter size in -y (multiples of wavelength): ’);

o,

% Assume wavelength 1=1

1=1;

k=2*pi/1; % wavenumber

a=alx*l; % dimension in x (in meters)
b=bl*]; % dimension in y (in meters)

Nx=input ('Enter # of patches in x (N): ');
Ny=input (’Enter # of patches iny (M): ');

dx=a/Nx; - dy=b/Ny;
xx=-a/2:a/(Nx-1):a/2; =-b/2:b/ (Ny-1) :b/2;

% xx,yy are the dimension of the plate in meters

R=input (’'Resistance:0=PEC, l=constant, 2=1linear taper,

3=ramp:’);

if R==1

cl=input (’'Enter constant value: ');

end
tic
2000000000000 000000 000yl st st YT s TELTTLTELTIRSSS

%%%%% FIND COORDINATES OF THE PATCHES %%%%%

[x0,yo]l=coord(a,b,Nx,Ny); % Call function coord.m
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xl=reshape (x0,1,Nx*Ny) ;
yl=reshape (yo, 1, Nx*Ny) ;

o\°
o\°
o\°
o\°
o\°®
o\®
o\°
o\°
o\°
o\®
o\®

5%%%%% FIND PATTERN OF THE INPUT RESISTANCE

% Some cases

if R==
r=zeros (Ny,Nx) ; % Zero everywhere
elseif R==
r=cl*ones (Ny,Nx) ; % Constant
elseif R==
r=abs (xo0) +abs (yo) ; % linear taper in both dimensions
r=150*r;
elseif R==
r=zeros (Ny, Nx) ;
for 1=1:Nx
r(:,1)=100*1*ones (Ny,1); % ramp
end
end

rl=reshape (r,1,Nx*Ny) ;

o\°

Next find coordinates of the center of the patches in

o\®

direction cosine space. If method (I) is used, run fit.m

o\®

first, to find nx, ny. If method (II) is used nx=Nx and
ny=Ny;

o\®

if choice2== % Method (II)
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-
1

nx=Nx
ny=Ny

-
I

(I)

% Method

elgeif choice2==0

Nu

nx=4

Nv

ny=5

end

coord (2, 2,nx,ny) ;

[u,vl]

-
7

reshape (u, 1, nx*ny)

ul=

reshape (v, 1,nx*ny) ;

vl=

-
7

sgrt (ul.”2 +v1.%2)

sintheta=
find (sintheta>1)

I

-
7

sqrt (1-sintheta.”2);

atan2 (vl,ul)

phi=

costheta

(1)

% Method
costheta(I)=1[];

ul(I)=[1; vi(I)=[];

if choice2==0
end

phi(I)=1{1;

sintheta(I)=I[];

BRistatic

)
)

if choicel==1

-
1

")

translate it into radians

degrees:

in

input (' Enter theta inc.
thid*pi/180

thid

%

-
14

thir

") ;

in degrees

inc.

i

input (' Enter ph
phiid*pi/180

phiid

-
1

phiir
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coefl=1./(2*r1+377*cos (thir)); % bistatic
coef2=1./(2*rl*cos(thir)+377); % bistatic

% u=sin(theta) *cos (phi)
% v=sin(theta) *sin (phi)

ui=sin(thir) *cos (phiir);

vi=sin(thir)*sin(phiir);

sincl=sin(k/2*dx* (u(1,:)+ui))./(k/2*dx* (u(1,:)+ui));
Sl=find(isnan(sincl));
sincl (S1)=ones (size(S1));

sinc2=sin(k/2*dy* (v (:,1)+vi))./(k/2*dy* (v(:,1)+vi));
S2=find(isnan(sinc2));

sinc2 (S2)=ones(size (8S2));

sinc=sinc2*sincil;
sinc=reshape (sinc, 1, nx*ny) ;
if choice2==
sinc(I)=1[];

end

choice3=input ('Enter 1 for sigma_theta theta, 2 for

sigma_phi_phi, or 3 for the general scattered field: ’');

if choice3==1 % Compute sigma_theta theta

for p=1:Ny*Nx

expn=exp (j*k* (x1* (ul (p)+ui) +yl* (vl(p)+vi)));
sl (p)=(expn*conj (coefl’));




end

$E=dx*dy*cos (thir) *costheta. *sinc. *cos (phi-phiir)
E=dx*dy*cos (thir) *costheta.*sinc.*cos (phiir) . *s1;

RCS1=((377*2*pi*E) .*2)./pi;

RCS=10*10g10 (abs (RCS1)) ;
RCS=reshape (RCS, Ny, Nx) ;

elseif choice3==2 % Compute sigma_ phi_ phi

for p=1:Ny*Nx
expn=exp (j*k* (x1* (ul (p) +ui) +yl* (vl (p) +vi)));
s2 (p) = (expn*conj (coef2’)) ;

end

E=dx*dy*cos (thir) *sinc. *cos (phi-phiir) .*s2;
RCSl=(377*2*pi*E).A2./pi;

RCS=10*10g10 (abs (RCS1) ) ;
RCS=reshape (RCS, Ny, Nx) ;

elseif choice3==3 % Compute field

Eth i =input(’Enter magnitude Eth_i: ’);
Ephi i =input ('Enter magnitude Ephi_i: ’);
for p=1:Ny*Nx
expn=exp (j*k* (x1* (ul (p) +ui) +yl* (vi(p) +vi)));
sl (p)=(expn*conj (coefl’));

end
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for p=1:Ny*Nx
expn=exp (j*k* (x1* (ul (p) +ui) +y1* (vli(p) +vi)));
s2 (p) = (expn*conj (coef2’));

end

E_th=dx*dy*cos (thir) *costheta.*sinc.* (Eth_i*cos(phi-phiir) .*

s1+Ephi_i*sin(phi-phiir) .*s2);

E phi=-dx*dy*cos (thir) *sinc.* (Eth_i*sin(phi-phiir).*sl-Ephi
i*cos(phi-phiir) .*s2);

E=sgrt ((abs(E_th))."2+(abs(E_phi)) ."2);
El=reshape (E, Ny, Nx) ;

end

if choice3==
save fnb a b E_th E_phi Eth i Ephi i r ui vi thir
phiir ul vl x1 yl xx yy choice3 choice2 % Use in synth.m
else
save fnb a b E r ui vi thir phiir ul vl x1 yl xx yy

choice3 choice2 % Use in synth.m
end

$3%%%%%%%%  MONOSTATIC CASE $%%%%%%%%%%

elseif choicel==

sincl=sin(k*dx*u(1,:))./(k*dx*u(l,:));

82




S1=find(isnan(sincl));
sincl (S1)=ones(size(S1));

sinc2=sin(k*dy*v(:,1)) ./ (k*dy*v(:,1));
S2=find(isnan(sinc2));
sinc2 (S2)=ones (size(S8S2));

sinc=sinc2*sincl;

sinc=reshape (sinc, 1,nx*ny) ;
coef=1./(2*r1+377); % monostatic

for p=1:Ny*Nx
expn=exp (2*j*k* (x1*ul (p) +yl*vl(p)));
s (p) = (expn*conj (coef’)) ;

end

E=dx*dy*sinc. *s;

RCS1=(377*2*pi*E) ."2/pi;
RCS=10*10g1l0 (abs (RCS1)) ;
RCS=reshape (RCS, Ny, Nx) ;

if choice2==1 % Method II

Q

save fnm a b E ul vl x1 yl r xx yy choice2 % Use it in

synth.m
elseif choice2==0 % Method (I)

E(I)=I[];
save fnm a b E ul vl x1 yl r xx yy choice2 % Use it in

synth.m

end

end
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save nf E Nx Ny I % Use in fanalys.m

time=toc

if choicel==
if choice2==1 % Method (II)

if choice3==1 | choice3==2
figure(l);mesh(xx,yy,real(r)),xlabel('Size in x')

ylabel (’Size in y’),zlabel ('Ohms’)

figure(2)

mesh (u, v, RCS)

xlabel ('u=sin(theta) *cos (phi) ')
ylabel (’v=sin(theta) *sin(phi) ')
zlabel (' Sigma/lambda”®2 in dBSm’)

sint=u(l, :);

th=asin(sint); th=th*180/pi;

figure(3)

plot (th,RCS(Ny/2,:)),grid

xlabel ('Angle theta in deg. at phi=0 plane’)
ylabel (' Sigma/lambda”®2 in dBSm’)

RCS1=reshape (RCS1,Nx,Ny) ;
mesh (u,v,abs (RCS1))
end

end
elseif choicel==

figure(l);mesh(xx,yy,real(r)),xlabel('Size in x’)
ylabel (’Size in y'),zlabel ('Ohms’)
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figure(2)

mesh {(u,v,RCS)

xlabel (’u=sin(theta) *cos (phi) ')
ylabel('v=sin(theta)*sin(phi)’)
zlabel (’Sigma/lambda®2 in dBSm’)

sint=u(l,:);

th=asin(sint); th=th*180/pi;

figure(3)

plot(th,RCS(Ny/z,:)),grid

xlabel (’Angle theta in deg. at phi=0 plane’)
ylabel (' Sigma/lambda”®2 in dBSm’)

RCS1=reshape (RCS1,Nx,Ny) ;
mesh (u,v,abs (RCS1))

end

end

end

save mf RCS th
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o\®

Code synth.m

% This code reads from the files fn*.mat (output of

o\°

the code field.m), RCS or field values at specific

o\®

points, and synthesizes the surface resistivity.
This code divides the sheet and DCS into 'big’
patches compared to the field.m code. The number of

o o

o\°

patches should be choosen such that the center of

o\

the big patch, coincides with the center of a small.

o\®

So, the big patch must contain an odd number of

o\®

smaller patches.

o\®

Note that the codes field.m and synth.m can also

o\°

have the same number of patches.

% Works for monostatic and bistatic case.

clear

choicel=input ('Enter 1 for bistatic or 0 for monostatic: ")

if choicel==
load fnb
elseif choicel==0
load fnm
end

k=2*pi;
Nx=input ('Enter # of patches in x (N): ')

Ny=input ('Enter # of patches iny (M): ’);

% Nx, Ny are the ’'big’ patches.

tic
Dx=a/Nx; Dy=b/Ny;
XX=-a/2:a/(Nx-1):a/2; YY¥=-b/2:b/(Ny-1) :b/2;
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$%%%% FIND COORDINATES OF THE PATCHES OF THE SHEET

[xo,yol=coord(a,b,Nx,Ny); % Call function coord.m

Xll=reshape (x0, 1, Nx*Ny) ;
yll=reshape (yo,1,Nx*Ny) ;

[U,V]=coord(2,2,nx,ny);
Ul=reshape (U, 1,nx*ny) ;
Vli=reshape (V, 1, nx*ny) ;

elseif choice2==
nx=4 % Nu

ny=>5 % Nv

[U,V]=coord(2,2,nx,ny);
Ul=reshape (U, 1,nx*ny) ;
Vl=reshape (V,1,nx*ny) ;
sintheta=sqgrt (Ul.%2 +V1.%2);

II=find (sintheta>1);
UL(II)=1[1; Vi(II)=I];
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end

o\
o\
o\
o\
o\
o\
o\°

This part finds the index of the selected points

o\
o
o°
o\@
o\
o\°
A

1:length(U1)

for 1

=ul-Ul(1l);

fi11
f21

find(abs(f11) -min(abs(f11))==0);

=v1-V1(1l);

f12
f22

find (abs(f12) -min(abs(f12))==0);

I

£22-£21(11);

11

ff=

find(ff
ff1==1]
11+1

==0) ;

ffl=
while

-
’

11=

£22-£21(11);

ff=

==0) ;

find (ff

ffi=

end

=f£21(11);

index (1)

end

o\
o
o\e
o\
B

o\

ul (index) ;

UU1

vl (index) ;

Vvl

Ui’ vvi' Vi'];

[UU1’
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if

if

if

X1=x1 (index) ; Y1=y1 (index) ;
(X1’ x11' Y1’ y11'];

sintheta=sqgrt (U1.%2 +V1.%2);
pphi=atan2(V1,Ul);

ccostheta=sqgrt (1-sintheta.”2);

[+

choicel== % Bistatic

sincl=sin (k/2*Dx* (U(1, :)+ui)) ./ (k/2*Dx* (U(1, :)+ui));
S1=find(isnan(sincl));

sincl(S1)=ones(size(S1));

sinc2=sin(k/2*Dy* (V(:,1)+vi))./(k/2*Dy*(V(:,1)+vi));
S2=find(isnan (sinc2));

sinc2 (S2)=ones (size(82));

ssinc=sinc2*sincl;
ssinc=reshape (ssinc, 1,nx*ny) ;

choice2==

ssinc(II)=[];

end

C=1[1;

for 1=1:Nx*Ny
e=exp (F*k* (X1* (U1 (1) +ui) +Y1* (V1 (1) +vi)));
C=[C;el;

end
choice3==1 % Sigma_th th

EE=E (index) ;
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E1=EE./ (Dx*Dy*cos (thir) *ccostheta.*ssinc. *cos (pphi-phiir));
E1=EE./ (Dx*Dy*cos (thir) *ccostheta. *ssinc.*cos (phiir));

Z=find (isnan(E1)) ;
E1(Z)=zeros(size(2Z));
El=conj (E1');
$g=C\E1;
g=pinv (C) *E1;
imp=.5*(1./g-377*cos (thir));
impl=reshape (imp, Ny, Nx) ;

dd=real (imp) ;

elseif choice3==2 %sigma_ phi phi

EE=E (index) ;

E1=EE./ (Dx*Dy*cos (thir) *ssinc. *cos (pphi-phiir));
Z=find (isnan(E1)) ;

E1(Z)=zeros(size(Z));

El=conj (E1');

g=C\E1;

%g=pinv(C) *E1;

imp=(1/(2*cos(thir)))*(1./g9-377);
impl=reshape (imp, Ny, Nx) ;

dd=real (imp) ;

elseif choice3==3
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El th=E_th./(Dx*Dy*cos (thir) *ccostheta.*ssinc) ;
Zl=find (isnan(E1_th));

El th(Z1l)=zeros(size(Z1));

El_th=conj (E1_th');

El phi=E_phi./(-Dx*Dy*cos (thir) .*ssinc) ;
Z2=find (isnan(E1_phi));

El phi (Z2)=zeros(size(Z2));

E1l_phi=conj (El_phi’);

El=[El_th;E1_phi];

all=conj (Eth i*cos(pphi-phiir))’;
al2=conj (Ephi_i*sin(pphi-phiir))’;
a2l=conj (Eth i*sin(pphi-phiir))’;

(

a22=conj (-Ephi_i*cos (pphi-phiir))’;

Yl=((al2.*E1l phi)-(a22.*E1_th))./((al2.*a21-all.*a22));
$Y2=(E1_th-all.*Y1l)./al2;

gl=pinv(C) *Y1;
$g2=pinv (C) *Y2;

imp=.5*(1./g1-377*cos (thir)) ;
$imp=1/(2*cos (thir))*(1./92-377);

impl=reshape (imp, Ny, Nx) ;
dd=real (imp) ;

end
save faros dd Dx Dy k x11 choicel choice3 thir phiir ui

©0.0.0000000000000.000 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
$5%%%5%%5%5%5%5%%%%%%%%  MONOSTATIC 35%5%5%%5%5%5%%5333%%%%%




()

elseif choicel== % Monostatic

sincl=sin (k*Dx*U(1,:)) ./ (k*Dx*U(1,:));
Sl1=find(isnan(sincl));

sincl (S1)=ones(size(S1));

sinc2=sin (k*Dy*V(:,1))./(k*Dy*V(:,1));
S2=find(isnan(sinc2));

sinc2 (S2)=ones (size(S2));

ssinc=sinc2*sinci;

ssinc=reshape (ssinc, 1,nx*ny) ;

C=11;

for 1=1:Nx*Ny
e=exp (2*j*k* (X1*U1 (1) +Y1*V1i(1l)));
C=[C;el;

end

EE=E (index) ;

E1=EE./ (Dx*Dy*ssinc) ;
Z=find (isnan(E1l)}) ;
El(Z)=zeros (size(2));
El=conj (E1’);

g=C\E1;

%g=pinv (C) *E1;
imp=.5%(1./g-377);
impl=reshape (imp, Ny, Nx) ;

dd=real (imp) ;

[+

save faros dd Dx Dy k x11 choicel % Use in synthld.m
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time=toc

end

figure

mesh (XX, YY, real (impl))

hold on

mesh (xx,yy,T)

hold off

xlabel ('x (wavelengths)’)
ylabel ('y (wavelengths)'’)
zlabel (‘Rs and Ros in Ohms’)

rerror=max (max (abs (impl) -r) ) /max (max(xr) )
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o\°

Code synthld.m

% This code reads the surface resistivity from the file
faros.dat
% created by field.m and plots the scattered RCS in the

°

principal

0

% plane phi=0 (u axis).

clear

load faros

sinth=0:(1/49):1; % Sampling the sin (or the dcs)
costh=sqgrt (1-sinth.”2);

[-)

if choicel==1 % Bistatic

if choice3== % Sigma_th_th

d=1./(2*dd+377*cos (thir));

for p=1:50
expn=exp (j*k* (x11* (sinth(p) +ui)));
s (p)=(expn*conj(4d));

end

sincl=sin(k/2*Dx* (sinth+ui) )./ (k/2*Dx* (sinth+ui)) ;

S1=find(isnan(sincl));

sincl (S1)=ones(size(S1));

RCS=(377*2*pi*Dx*Dy*cos (thir) *costh*cos (phiir) .*sincl.*s).*2

/pi;

elseif choice3==2 % Sigma phi phi

9S4




d=1./(2*dd*cos (thir)+377);
for p=1:50
expn=exp (j*k* (x11* (sinth(p) +ui))) ;

s (p) = (expn*conj (d) ) ;
end

sincl=sin(k/2*Dx* (sinth+ui)) ./ (k/2*Dx* (sinth+ui) ) ;
Si=find{(isnan{(sincl));
sincl(S1)=ones(size(81)):;

RCS=(377*2*pi*Dx*Dy*cos (thir) *cos (phiir) *sincl.*s).”2/pi;

elseif choice3l==

brake

end

elseif choicel==0 % Monostatic

d=1./(2*dd+377) ;
for p=1:50
expn=exp (2*j*k* (x11*sinth(p)));
s (p) = (expn*conj (d)) ;
end

sincl=sin (k*Dx*sinth) ./ (k*Dx*sinth);

Si=find(isnan(sincl));
sincl(S1)=ones{size(81));
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RCS=(377*2*pi*Dx*Dy*sincl.*s).”2/pi;

end

RCS1=fliplr (RCS) ;
RCS=[RCS1 RCS];

theta=asin(sinth);
thetal=fliplr (theta);
theta2=[-thetal thetal;
theta3=theta2*180/pi;
sinthetal=fliplr(sinth);
sintheta2=[-sinthetal sinth];

figure (1)
plot (theta3,10*1ogl0 (abs(RCS)),’'r’)
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o\°

Code fanalysl.m
This code calculates the FFT of the field
of methods (I) and (II)

o\@

oe

clear
load nf
% Method (I)
x=length (E) ;

Y1=fft (E);

MM= [Nx Ny] ;MMM=min (MM) ;

f1=MMM/2* (0:x/2-1) /x;

% Method (II)

E2=E;

E2(I)=I[];
x2=1length (E2) ;

Y=fft (E2);

f2=MMM/2* (0:x2/2-1) /x2;

figure, subplot (211)

plot (£2,abs (Y (1:x2/2)))

%axis ([0 3 0 15001);

xlabel ('Nu or Nv’);ylabel (’'abs(FFT)’)

subplot (212)
plot (£f1, (abs (Y1 (1:x/2)))); %axis([0 3 O 1500]1);

xlabel ('Nu or Nv’);ylabel (’abs (FFT)’)
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o\®

Code fanalys2.,
This code calculates the FFT of the field

in u and v directions

o\°

o\®

clear
load nf

% Method (I) columns
%E=(377*2*pi*E) .*2/pi;
x=length(E) ;
Yi=abs (fft (E));

MM= [Nx Ny] ;MMM=min (MM) ;
fi1=MMM/2* (0:x/2-1) /x;

% Method (II) -rows
E2=reshape (E,Ny,Ny) ;
E2=conj (E’);

E2=reshape (E2,1,Nx*Ny) ;
Y2=abs (fft (E2));

figure, subplot (211)

plot (f1,Y1(1:x/2))

axis ([0 5 0 .8]1);

xlabel (' Nv');ylabel ('abs(FFT)"')

subplot (212)
plot (£1,Y1(1:x/2));

axis ([0 5 0 .8]);

xlabel ('Nu’) ;ylabel (’abs (FFT) ')
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function [x0,yo]=coord(a,b,Nx,Ny)

o\

Given the dimensions (a) in x, (b) in y of a

o\°

rectangle and the number of segments (Nx) in x

o\

and (Ny) in y, the coordinates of center of

o\®

each patch is returned.

o\

Point 0 of the coordinate system is at the

o\®

center of the rectangle.

o\e

Date: 1 Nov 1954
By: Nick Faros

o\°

dx=a/Nx;
dy=b/Ny;

o\°

if rem(Nx,2)==0 i.e. Nx is an even number

for n=1:Nx

for i=1:Ny
xo0(i,n)=-(Nx/2-(n-1)-0.5) *dx;
end
end
else % if Nx is an odd number

for n=1:Nx

for i=1:Ny
xo(i,n)=-((Nx-1)/2-(n-1)-0.5)*dx-dx/2;
end
end

end

if rem(Ny,2)==0 % i.e. Ny is an even number
for n=1:Nx
for i=1:Ny

yo(i,n)= (Ny/2-(i-1)-0.5)*dy;
end
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end

else % 1f Nx is an odd number

for n=1:Nx
for i=1:Ny
yo(i,n)= ((Ny+1)/2-(i-1)-0.5)*dy-dy/2;
end

end

end
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Code fit.m
This program fits M points in the unit circle.

o oP

o\

The spacing is uniform in one or both directions.

o\°

Date: 1 Nov 19354
By: Nick Faros.

o\°

clear
M=input ('Enter number of points in the unit circle: ’);

nx=2; ny=2; % Start at those values.

dx=2/nx;
dy=2/ny;

% Find the coordinates of the center
% of the patches.

[ul,vl]l=coord(2,2,nx,ny);
ul=reshape (ul, 1,nx*ny) ;
vl=reshape (vl,1l,nx*ny) ;
sintheta=sqgrt (ul.”2 +v1.%2);
I=find(sintheta>1);
vi(I)=[]1;ul(I)=I[];
L=length(vl) ;

k=1;

while L<M
if rem(k,2)==0
nx=nx+1;
[ul,vl]l=coord(2,2,nx,ny) ;
ul=reshape (ul, 1,nx*ny) ;
vli=reshape (vl, 1,nx*ny) ;
sintheta=sqgrt (ul.”2 +v1.%2);
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I=find (sinthetas>1);
vi(I)=[];ul(I)=1[};
L=length(vi);

elseif rem(k,2)~=0

ny=ny+1;
[ul,vl]=coord(2,2,nx,ny) ;
ul=reshape (ul, 1,nx*ny) ;
vl=reshape (vl, 1,nx*ny) ;
sintheta=sgrt (ul.”2 +v1.%2);
I=find (sintheta>1);
vi(I)=[];ul(I)=1[];
L=length(vl);

end

k=k+1;

end

[nx ny L]

plot (ul,vl,’'*’),xlabel(’'u’),ylabel ('v’)

title(’Points inside the unit circle’)
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